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length analysis of millimeter wavelength sources too

high in frequency to be measured conventionally.

Operating in the TENT mode the interferometer rep-

resents the ideal form of cavity resonator, permitting

the use of relatively large structures at very small wave-

lengths with complete freedom from troubles due to

higher order modes. The Q values obtained here are

higher than can readily be attained by a conventional

cavity resonator at these frequencies, and the indica-

tions are that still higher Q values can be obtained for

apertures and reflectors larger in terms of the wave-

length. As the cavity resonator for ultramicrowaves, the

use of the interferometer for dielectric constant and loss

measurements on both solids and gases is clearly indi-

cated, and in the ultramicrowave region of the spectrum

such a method becomes most advantagoues. Its use in

all other microwave devices employing a cavity is also

possible, and in particular it would appear that the in-

terferometer can be used with facility as the cavity

resonator for masers designed to operate at millimeter

and submillimeter wavelengths.
Aperture and reflector dimensions of 241 and 501, re-

spectively, in extent were used here, and the insertion

loss at optimum transmission is around 15 db. Conse-

quently, the reflected power is quite high so that the

fringes are best observed in transmission. For smaller

wavelengths the problem of adequate aperture anti re-

flector dimensions in terms of the wavelength becomes

easier, and interferometers for specific purposes such as

maser cavities become easier to accommodate and use

with the associated apparatus. Also with apertures and

reflectors which are large in terms of the wavelength,

the problem of the diffraction correction becomes less

severe and important, and the ease with which the inter-

ferometer can be used for precision mess urements :Such

as the velocity of light, and as a microwave standard of

length, will improve with the use of shorter wavelengths.
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Boundary Conditions and Ohmic Losses

in Conducting Wedges*
ROBIN M. CHISHOLM~

Summary—The present work is concerned with the boundary
conditions required to calculate the ohmic losses occurring in metal-
lic wedges under the influence of electromagnetic waves which are

sinusoidal in time. The validity of the surface impedance condition

used in calculating waveguide wall losses is examined carefully, and
a “modified)! surface impedance condition, which can be applied to

wedge problems in which the perfectly conducting solution is known,

is developed. A simple waveguide having a circular cross section, a
sector of which is occupied by a metal wedge, is used as an example.

The tangential magnetic field variations along the surface of the

wedge are shown graphically, demonstrating, near the tip of the
wedge, a large deviation from the tangential magnetic field of the
perfectly conducting solution.
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1. INTRODUCTION

T
HE heat losses within any conducting c~bject

caused by the presence of an electromagnetic

field, can be calculated by calculating the average

flow of power into the object as a result of the tangential

fields on its surface. The boundary cclnditions which

must be imposed on the surface of a metallic wedge in

order to calculate this power flow must be considered

very carefully. The standard surface irnpedlance condi-

tion used in the calculation of waveguide wall losses re-

lates the tangential electric field at a conducting bound-

ary to the known tangential magnetic field which
would exist at the boundary if it were perfectly corLduct-

ing. This condition, when applied to wedge problems,

often leads to fields which do not satisfy the Meixner

edge condition [1] and to infinite power losses in the re-

gion of the tip.
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Wedge problems have received considerable attention

in the past because of the possibility of infinite field

strengths at the tip of any wedge-shaped boundary. Be-

cause of this, the common technique of discarding wave

functions which possess singularities cannot be used,

and many boundary value problems involving wedges

appear at a first glance to lack uniqueness. In 1949

Meixner published his classical paper [1] on the “edge

condition, 77 which added a further ‘(boundary condi-

tion” to wedge problems, making their solution, in any

situation, unique. Since then, the formulation of prob-

lems involving perfectly conducting wedges has been

quite straightforward, although the subsequent solu-

tions to many such problems are very complex. In re-

cent years, the problem of diffraction by an imperfectly

conducting wedge has been treated [2], [3] and the sur-

face impedance boundary condition used. Although

some doubti was expressed about the validity of the con-

dition in the neighborhood of the wedge tip, it was as-

sumed to hold for the entire wedge face and no apparent

difficulties resulted.

Difficulties do arise, however, when the surface im-

pedance condition is used to modify solutions to per-

fectly conducting wedge problems for the purpose of cal-

culating ohmic losses, and, for this reason, the general

problem of field behavior near conducting wedges is

studied in the present work. In Section II, the exact

field behavior within a few skin depths of the wedge tip

is examined. In Section I I 1, the surface impedance con-

dition is derived using a wedge-shaped boundary and is

expressed in an integral form which reduces to the well

known surface impedance condition [4] except within

a few skin depths of the tip of the wedge. In Section IV,

the coupled modes in a wedge or septate waveguide

(Fig. 2) are developed and the reason for the apparent

breakdown in the surface impedance condition at the tip

of the wedge is illustrated. An approximate solution to

the problem is developed which agrees with the anal-

yses of Sections II and 111 and a numerical example,

using the wedge waveguide, is presented graphically in

Fig. 3.

II. FIELD BEHAVIOR NEAR THE TIP

In treating the behavior of the fields near the tip of
the wedge, the cylindrical coordinates r, +, and a are

used. The z axis is taken along the axis of the wedge

which is shown in cross section in Fig. 1. The wedge has

been symmetrically placed with respect to the x axis

and, in the region outside of the wedge, the coordinate

angle @ is measured from the positive x axis. The fields

within the metal wedge are represented in terms of

another cylindrical coordinate system ~, ~, and ~ in

which the coordinate angle $ is measured from the nega-

tive x axis, as shown. The two faces of the wedge are
given by

‘$=+41, 4=–42

Fig. l—The coordinate system used.

and

4=–41> 4=+02,

and the total wedge angle 40 is given by

The fields are assumed to vary as exp (jut) and the elec-

tric properties of the wedge are designated by a complex

permittivity,

where j = ~— 1, and u is the electrical conductivity in

mhos per meter. The wedge is assumed to have a mag-

netic permeability, P, which is very close to PO.Variation

in the z direction is assumed to be of the form exp ( –j~z),

as it would be in a wedge waveguide.

The other four field components can be expressed in

terms of E. and H, by the following relationships [5]:

dE. 13H.
E, = – (j~/a2) ; – (yb/J/a2Y) ~ , (1)

13H.
Ed = – (jI?/a2r) : + (.12W’CY2); ~ (2)

8EZ
H, = (jw/cA’) ~ – (jp/a2) ‘:)

Ho = – (jaq’a2) : – (@/a2Y)”a; J (4)

(3)

where ~, in the case of the wedge waveguide, is the axial

propagation constant 21r/~ G and a is related to the free-

space propagation constant k = 27r/XO, by the relation,

~z = kZ — flv.

Representations of the form (1) to (4) are valid both in-

side and outside of the wedge when the appropriate e

and K are used. The constant .6 must be the same for

both regions, but a in the interior region is many times

larger than a in the exterior region. In both regions,
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both E, and H, must satisfy the two-dimensional wave

equation,

d ()d+
r— r—

d?’ &
+:+ (M’)’+ = o, (5)

where ~ = E, or H. and 8 replaces a in the interior

region.

Following a procedure similar to that used by Meix-

ner [6], the fields Es and H, can be expanded in a power

series in r about the origin, r = O.

E, = ~ Cnr‘+-~ (6)
n

and

R, = ~ ‘y.?’t+”–1, (7)
n

where the en’s and ~n’s are functions of the angle 4 and

0< Re (t) <1. Using (1) to (4), similar series can be de-

rived in terms of the en’s and yn’s for the four transverse

field components. The Meixner edge condition [1],

which requires that the energy density in the fields be

integrable at the wedge tip, limits the behavior of the

six field components for small values of r. It is a simple

matter to show that finite energy requires the two field

components parallel to the wedge axis to remain finite

as ~ approaches zero. This, in turn, means that, if

0< Re (t) s 1, c1 and Y1 are the smallest nonzero coeff-

icients in the series for E, and H.. The transverse field

components, however, may behave as r~–l as Iong as the

real part of t is greater than zero.-

Substituting (6) and (7) into the wave equation (5),

yields simpIe, ordinary differential equations for the co-

efficients C. and Y., and in particular,

$+tzcl=o (8)

with similar equations for ~1, tl, and 71, where the bar

indicates fields within the wedge. This means that

Cl = L cos (to) + 12sin (@), (9)

and

V1 = ~1 cos (f@) -t- ~Z sin (t+). (lo)

Within the metal wedge, ~, and ~. can be expressed in

the same form, and in both regions the behavior of the

transverse field components as r approaches zero can be
found using (1) to (4) together with (9) and (10). In the

outside region,

ET = [Ij cos (h+) + La sin (t@)]v~–l (11)

E+ = [L, cost (t+) – LI sin (to)] r’-’, (12)

H, = [Al cos (t@)+ A2 sin (t~)]?~-l, (13)

H+ = [A2 cos (tq5) – Al sin (@)]?’’–l, (14)
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with a similar representation within the wedge. In terms

of c1 and -yI,

L, = – (j~/~2){@l + LI@z} , (15)

L, == – (jt/c#) {612 – wA,] , (16)

A, = – (jf/cY’) [ pAl – cd,}, (17)

AZ = – (jt/a2){~k, + ad,}. (18)

An identical set of relationships holds for the barred

quantities which represent the fields within the wedge.

Continuity conditions at the wedge faces can then be

used to determine the L’s and A’s in terms of a single

amplitude factor. An estimate of how slmall v must be

before the first term is predominant in all of the series

involved, can be made by studying (5). This equation

can be written in terms of the dimensionless variable

(cw) and power series solutions appropriate to each region

would involve either (cw) or (~~). Since, within the metal,

@s( —j-q.w)liz, the condition that the first term of the

series wdkin tlze wedge be predominant is that (r/8) <<1

where 8 = (2/ups) 1/2is the skin depth of the metal.

The continuity of E,, eE+, H, and @Z~ at the two

wedge faces yields eight homogeneous, linear eqUatiOnS

in the eight unknown coefficients which~ determine the

field behavior near the tip of the wedge. 13ecause of sym-

metry with respect to the angle O, these equations can

be separated into two sets of four equations each. For

fields which are even in E. and odd in H, with respect to
~ (12=i, =hl=X1=o),

L, COS (t~,) – ~, COS (t42) = O, (19)

eOLI sin (f@l) + :~1 sin (t+a) = O, (20)

A2 sin (@J + ~Z sin (f$,) = 0, (21)

poAz COS(k$l) – ~~2 COS (k$,) = O. (22)

A nontrivial solution to this set of equations exists if,

and only if,

Cos (f@l) , — Cos (f+2) sin (t+l), sin (fq5J
= O, (23.)

sin (@J, g sin (t@2) Cos (fl+l) , – q Cos (f!b2)

where

g = Z/CO and q = p/PO.

for theEq. (23) yields two sets of discrete eigenvalf~es

exponent t.One set, which depends only on g, makes the

first factor in (23) vanish. The other set., which depends

only on q, makes the second factor vanish.

A similar set of equations results from fields which are

odd in E, and even in H, with respect to the angle $ in
Fig. 1. In general, four sets of eigenva.lues for t occur.

Two sets depend only on the electric properties of the

wedge and are given by the roots of

sin (hr)

l–g=

cos (k+l) sin (t@:j‘
(24)
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and

sin (tin)
l–g=

cos (t@z)sin (t@J “
(25)

The first of these is associated with fields which are even

in Ea and the second with fields which are odd in E. with

respect to the coordinate angle +. Replacing g by q in

(24) and (25), two other sets of eigenvalues occur which

depend only on the magnetic properties of the wedge.

Solutions associated with values of t,determined by

the electric properties of the wedge, yield nonzero

values for LI and ~1 in (19) to (22), but admit only the

trivial solution, AZ =XZ = O, for the coefficients associ-

ated with H, and H+ in (13) and (14). Solutions asso-
ciated with values of t determined by the magnetic

properties of the wedge, on the other hand, yield non-

zero values for the A’s and admit only the trivial solu-

tion for the L’s. It can be seen, from (11) to (14), that

a field component can become infinite at the tip of the

wedge only if an eigenvalue of twhich is less than unity

admits a non-zero value for the L’s or A’s associated

with that component. This, in turn, means that any

singularities in the transverse components of the mag-

netic field at the tip of the wedge depend only on the

magnetic properties of the wedge. Singularities in the

transverse components of the electric field, moreover,

depend only on the electric properties of the wedge. If

the wedge has a magnetic permeability p equal to po and

a conductivity of CTmhos per meter, then

1 – g = (ju/co60)

I–q=o.

The “magnetic eigenvalues” are determined by the roots

sin (tfr)
o=

cos (t@l) sin (tq5z)

and

sin (hr)
o=

cos (@z) sin (t@l)

(26)

(27)

which yield only integral, nonzero values for t.This

means that no singularity can occur in either H, or .H@
at the tip of the wedge. If p is close to PO, moreover, t

will lie very close to a positive integer and any singular-

ity in H, or Ho will be of a very low order.

The “electric eigenvalues, ” on the other hand, are de-

termined by the roots of

sin (t7r)
( ju/cmJ =

cos (t@l) sin (t@z)
(28)

and

sin (hr)
(j%/cLxl))= (29)

cos (k#Iz) sin (t@l)

For large values of (a/cLEo), these eigenvalues lie close to

the zeros of sin (@J, sin (@z), cos (@J, and cos (@2),

which are given by

t,,.= (?2+ 1)??-/(24,) (30)

and

t2,n = (?’2 + l)7r/(2@2) (31)

where n is a positive integer or zero. Eigenvalues which

are even multiples of 7r/2@l or odd multiples of 7r/2@j

are associated with solutions for E. which are odd with

respect to the angle ~. The others are associated with

fields which are even in E..

If @i lies between O and r/2, then the only eigenvalue

less than unity in either (30) or (31) is

tl,o= T/2@l. (32)

For finite but large a, moreover, the lowest eigenvalue

for the metallic wedge is approximately given by

jLU60 tan (tl,07r)
tJj= t~,~— (33)

@’1

As a becomes infinite, ,tEapproaches tl,”,the eigenvalue

for the perfectly conducting wedge, as l/a or as 82,

where 6 is the skin depth. This ‘(perturbation” in tcaused

bv the finite wall conductivity, therefore, is a second

order effect compared to the ‘fcoupled modes” discussed

ill Section II 1.

The axial fields associated with this lowest eigenvalue

are given, near the tip of the wedge, by

E, = 11COS (t~@)f’ ‘B (34)

and

Hz = A2 sin (tE+)v’E, (35)

where II and X2 are related to each other from (18) by

11 = (– l?/OJeo)b (36)

since Aj = O. Eq. (36) shows a fixed coupling between E.

and H, which is independent of the conductivity crof the

wedge. The two magnetic field components which are

perpendicular to the axis of the wedge, moreover, cannot

have a singularity of an order greater than Y’II-l where

tK is the lowest eigenvalue associated with the magnetic
properties of the wedge. This eigenvalue in practice is

very close to unity. Using (3) and (4), these conditions

can be expressed mathematically in terms of the two tip

equations:

(3EZ fl y, ,0
faster than Y‘~

E@ – (lJCo 8Y
(37)

and
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These equations do not, of course, restrict the behavior

of E. and H. unless these field components individually

approach zero more slowly than rtrr. It can be shown,

however, that (37) implies (38) and is a necessary and

sufficient condition for finding the coupled E. near the

tip of an imperfectly conducting wedge if H, is a given

wave function which approaches zero as r~ where t< tH

[and indeed t can be as low as t~ in (33) ].

III. FIELD BEHAVIOR AWAY FROM THE TIP

In Appendix I an expression is derived for the rela-

tionship between E. and H, on the surface of a metal

wedge where the coordinates used are shown in Fig. 1.

The expression is in integral form and holds everywhere

on the faces of the wedge. For highly conducting wedges

the expression reduces to

f
E.(r, @J = ‘; _’ H,Hof2J(a I % I )dx (39)

m

in which E. is the axial electric field on the surface

@= +4w a distance r from the tip of the wedge. Hr iS
the radial magnetic field a distance x from the point at

which E, is being evaluated. Ho@J(ti I xl ) is a Hankel

function of the second kind [7] which behaves as

(~~~1 xl )-”2 exp (–j@l xl –*T) for large values of I xl .
If a has a negative imaginary part Ho@), (FI I x I ) vanishes

rapidly as I x I increases and, for r more than a few skin

depths, the upper limit in (39) can be taken as + cc.

Furthermore, if H, is continuous and slowly varying

near the point * = O, it can be replaced by its value at
x = (), in which case (39) becomes

This integral can readily be evaluated by using

of Laplace transforms [8] to yield

(40)

tables

(41)

for large values of wedge conductivity. 2. is called the

surface impedance of the metal and is related to the skin

depth 8 by

z = @pa(l +j)
s (42)

2“

The same analysis can be used to relate E, at the wedge

face @= ~1 to H. yielding the result,

E,(r, @J = – z,~,(r, @I). (43)

Relationships on the other wedge face CP= –cP1 are iden-

tical except for sign.

This surface impedance condition relates the tangential

electric field at the surface of the wedge to the total

tangential magnetic field existing at the same point.
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This relationship is valid to within a few skin depths of

the wedge tip, and the error introduced by assuming

that it holds over the entire wedge face does not appear

to be too large, This assumption has been used success-

fully in diffraction problems [2] and the integral ex-

pression (39) does not indicate any violent breakdown

in the relationship. If the actual H,, however, is assumed

to be the same as it would be if the wedge were perfectly

conducting, this field becomes infinite at the wedge tip

in many problems. .4pplying the surface impedance con-

dition in this case would yield an axial electric field

which would become infinite at the wedge tip in viola-

tion of the edge condition. This difficulty, however, can

be resolved by considering a simple examlple.

The lowest propagating mode of the wedge waveguide

shown in cross section in Fig. 2, when perfectly con-

ducting walls are assumed, is governed by the axial

magnetic field,

H.” = J,(aY) sin (t@) (44)

where t= tl,o= 7r/241, and J~(ar) is a Bessel function of

the first kind. The constant a is definecl in Section II

following (4). The radial magnetic field associated with

this mode is given by (3), namely,

H,” =
– ~o
— Jt’(ar) sin (t@). (45)

a

Fig. 2—The wedge waveguide.

The finite conductivity of the walls will introduce an

axial electric field proportional to Z, or to the skin depth

~. This perturbation cannot be taken care of by the small

perturbation in the eigenvalue t,which by (33) is propor-
tional to 62, and a coupled mode must be introduced.

By using a well known relationship for 13essel functions

[9] a wave function E,e can be found which, on both

wedge faces, satisfies the condition,
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and which has the form,

z8jp J,4(W) Cos [(t – 1)41
Eze. –—

2ff [ Cos [(t – 1)+1]

J,+,(a?’) Cos [(t+ 1)+]
—

1
. (47)

Cos [(t + 1)41]

This “coupled” mode, moreover, carries with it a radial

magnetic field which is related to E.’ by (3). Calling this

coupled magnetic field H,’, it is given by

~r, = .@ dE.e .
(48)

a% df$

Since, for any fixed position on the surface of the wedge,

E,’ is proportional to ZJI,O, H,e is also proportional to

Z8H,0 and vanishes as the wall conductivity becomes

infinite. One is therefore tempted to assume that Hr” is

negligibly small compared to H,” in problems involving

metal wedges. The r in the denominator of (48), how-

ever, makes H,’ become arbitrarily large for small

values of r, and the ratio of H,” to H,” on the wedge

surface is given by

H,e – bZ8

[

t2J,(aY)
–1

HTO = ~
cOt (d,) (ar)yl (ar~

1
(49)

where b = (jwc/a2) and Z,= u~~(l +j) /2, where 6 is the

skin-de@ This ratio is small if Y/6 is large but, for

finite values of 13, this ratio becomes infinite as r ap-

proaches zero.

This result suggests a modified surface impedance

condition in which H,” is replaced by (H,” +H,”). The

surface impedance condition then becomes

(50)E,’ = Z. [H,” + (jox/a2r)dl?.’/8@].

For points more than a few skin depths away from the

tip of the wedge, (50) is just (46), the surface impedance

condition used in all waveguide problems. As r ap-

proaches zero, however, (50), which can be rewritten in

the form,

– @ ~ 13H.0 dE.’
~EZ,._
bZ8

—+—
dr

(51)
we t+b ‘

using (45), approaches the tip equation (37) provided

that Ez’ and H.” both approach zero as rt where t+ 1 is
greater than tH.This will always be the case if E.e and

H.” satisfy the Meixner edge condition which places a

lower limit on the exponent t.

This analysis shows that if the modified surface im-

pedance condition is assumed to hold over the entire

wedge face, fields which are in agreement with the

analysis of Section II can be found. These fields will be
identical with those derived from (44) and (47) for large

values of r/6 and the breakdown will occur when ZZre,

given by (48), becomes comparable in magnitude to H,”

given by (45). As r/8 approaches zero, moreover, the

radial component of the magnitic field will approach

zero as shown in Section II.

IV. FINDING APPROXIMATE SOLUTIONS

In Appendix II it is shown that, if HzO is a given wave

function which satisfies the Meixner edge condition at

the tip of the wedge, then any function E, which satis-

fies the tip equation (37) will also satisfy the wave equa-

tion for small values of r, and will give rise to fields which

are in keeping with the ‘(tip 7’ analysis given in Section

II, provided only that none of the resulting field com-

ponents become independent of the angle ~ in Fig. 1, as

Y approaches zero. This condition can usually be satisfied

by inspection when looking for approximate solutions.

Eq. (37), moreover, can be written in the form,

~ + (r/6)H,0 + O(rZ) = O, (52)

where b = (jox/a2), H,”= — (jfl/a2) 8Ha0/dr, and O(Y3) is

any function which approaches O as r’ where x> tIf.

Away from the tip region the coupled field can be found

by ordinary methods since its value on the faces of the

wedge and on other boundaries k a known quantity re-

lated to the tangential magnetic field of the perfectly

conducting solution to the problem. For large values of

r/ti, therefore, E2 is known and has, in the simplest case,

the form,

E, = Z8H,0/P(I#J), (53)

where P(c#) is a well behaved, odd function of the angle

@ such that P(@l) =1. If (53) is true, then a solution of

(54)

has the following properties:

1) For small values of r/b Z. I itsatisfies (52).

2) For large values of r/b Z. I itsatisfies (53) and

therefore approaches its correct value away from

the tip region,

3) For all values of r it satisfies the surface impedance

condition on the faces of the wedge.

Functions which satisfy (54) can

the general solution has the form,

‘z= -ex@bz.JJp@4

C r e 1

be found quite easily;

Using (55) as a guide, it is a simple matter to find an E.

which satisfies the tip equation for small values of r/3,

and which approaches in a continuous manner the

‘istandard” solution given by (53) for large values of

r/8. The condition that none of the field components be-

come independent of + as r approaches O can usually be
satisfied by inspection. This technique, therefore, en-

ables one, with a minimum amount of guessing, to find
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a continuom function which satisfies the correct bound-

ary conditions and the wave equation near the tip of the

wedge, and which approaches the “standard” coupled

mode solution away from the tip. The transition region

can be estimated from (49) since it is determined by the

distance from the tip of the wedge at which the standard

surface impedance condition used in most waveguide

problems breaks down.

In the present example, however, E,e and H,” do not

satisfy (53) and H,a has to be written in the form,

H,” = – (j@/2a) [Jf-.-,(ar) – J,+l(cw)] sin (f+)

= H,A + H,B. (56)

In (47), however, E,e has the form,

E,’ = E,A + EZB (57)

where

ZJI.A Cos [(t– 1)4]
EZA = (58)

cos [(t– I)@l] sin (to)

and

z,Hr~ Cos [(i + 1)4]
E,B = (59)

cos [(t + l)q51] sin (@) ‘

both of which are of the form of (53). Both E.B and H,B
vanish instead of becoming infinite at the wedge tip and

(59) can be assumed to be valid for all values of r. Eq.

(58) represents the dominant fields for small values of

r/~, and H,A can be used to replace H,a in (53). A field

Ez can then be found as before, using (55) as a guide.

This function, of course, approaches E~A in (58) for

large values of r/6, but E,B as given by (59) can be

added to the solution for all values of r without affecting

the behavior of the solution near the tip of the wedge

since E,B vanishes as r~+l. When this is done, the coupled

axial electric field in the wedge waveguide is given, on

the faces of the wedge, by the simple expression,

~ = – ((3a/@’Jt’(@’)[(f’/bZ.) + ~Cos (@l)l , ~60)
z

[(Y/bZ,)’ + t’]

Ohmic Losses in Conducting Wedges 195

100 \ I 1

-Perfect Conduct ivil’y,
90 I ——! EE

80 i LI l.-l.-LlJ

‘YzE_ULJ J_L.1
O I 2 3 4 5—6 7

(fj)xlo’~

Fig. 3—The variation of the total radial magnetic field with distance
from the tip of the wedge in a one-degree wedge waveguide oper-
ating in its lowest mode. D is the diameter of the waveguide, AO

the free-space wavelength, and 6 the skin depth, In this case
XO/D= 2,0.

V. OHMIC LOSSES

When (19) to (22) are solved for ~1 and 12, the elec-

tric field components within the wedge are given, near

the tip, by

E. = – [jl?/a Cos (fT)] (?) ‘ Cos (t@), (61)

77, = [t/u Cos (h) ] (7) ‘–1 Cos (@;l , (62)

and

l!?+ = – [t/u cos (h)] (?) ‘-l sin (t?), (63)

when it is assumed that the axial magnetic fie~d, outside

of the wedge, has the form,

H. = (r)’ sin (t+), (64)

near the tip of the wedge. If \ E I is the rms value of the

electric field in volts ~er meter, and if ~? is the complex

where b = (jut/a2). For large values of I r/b 2. I this is
just the surface impedance condition relating Es to H,”
on the wedge surface. For small values of I r/b Z. 1, (60)

holds for all values of O simply by replacing 41 by @

When this is done it is a sim~le matter to show that
H,8 = – HrO and .H~’ = – H60 as’ required by the analysis

in Section 11.
conjugate of E, the total power loss per unit length with-

Since the present theory assumes that (50) holds
in a sector of the wedge bounded by a smali radius YOF

for all values of r, the total radial magnetic field ‘s ‘iven by

H,= Hv” +H,e is proportional to E,e in (60) on the faces

of the wedge. This field differs from .H,O for small values ~= Jo’0f:2{aEE/~~~~?wattsI,errneter. (65)

of Y/ti and a plot of H, in a typical wedge waveguide is

given in Fig. 3 for different values of 6/Xo, where ~ is the For small values of r@, this integrates to

skin depth, ho the free-space wavelength, and D the

diameter of the waveguide. W = @O[2a cos’ (h) ]–’?’02’ watts per meter. (66)
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This is vanishingly small for small values of ro, demon-

strating that the power dissipated in the tip region is

small. As u becomes infinite, the power dissipated in the

tip region approaches zero. The expression is valid for

very small values of 40, the total wedge angle, the limit-

ing value of 40 being determined by the breakdown of

(33). For vanishingly small values of 40, however, the

effect of the wedge disappears for any finite value of u

and the minimum value of t approaches unity rather

than $.

A more practical approach to the loss problem is to

integrate the real part of the complex Poynting vector

St” over the faces of the wedge. In terms of rms field

quantities, S+* is given by

S+* = E,iip – E,i?, watts per square meter. (67)

If the value of E. is given by (60) (or, in general, if E, is
derived by the method outlined in Section IV) the func-

tion S+* is integrable over the entire wedge face yielding

a small flow of power into the tip region which is con-

sistent with (66).

When this method is used to calculate the attenua-

tion constant of a wedge waveguide, the contribution

from the region of the wedge surface which is less than

one skin depth from the tip is insignificantly small.

When the standard, unmodified method is used, how-

ever, the contribution from this region dominates the

contributions to the attenuation constant from all other

regions of the waveguide surface. For an 18° wedge

waveguide operating in its lowest mode at a frequency

halfway between cutoff and the cutoff frequency of the

next lowest mode, the contribution from this ‘{tip re-

gion” is equal to the contribution from the rest of the

wedge surface. The total attenuation constant found

by the unmodified method in this case is 58 per cent

larger than that found by the method described in the

present paper. For a typical +“ wedge waveguide, more-

over, the unmodified method yields a contribution from

the tip region which is 50 times the contribution from

the rest of the wedge surface. This yields an attenuation

constant which is more than 30 times as large as that

found by the method described in the present paper.

Numerical values for the attenuation constants of

wedge waveguides have been published elsewhere [11].

These are given as functions of wedge angle, conductiv-
ity, and frequency over the usable range of such wave-

guides. The attenuation constant varies slowly with the

wedge angle and approaches a finite value as the wedge

angle approaches zero.

VI. CONCLUSIONS

The exact field behavior near the tip of a mathemat-

ically sharp, imperfectly conducting wedge has been

analyzed and it has been shown that the field compo-
nents satisfy static boundary conditions in the region

of the tip. It has also been shown that the only singu-
larity which can occur in any component of the electric

field at the tip of the wedge depends only on the dielec-

tric constant and the conductivity of the wedge. Simi-

larly it has been shown that the only singularity which

can occur in any magnetic field component depends

only on the permeability of the wedge. This means that

highly conducting wedges with a permeability equal to

that of the surrounding medium cannot support a singu-

larity in any of the magnetic field components as the

perfectly conducting wedge appears to do. The mag-

netic field components which are perpendicular to the

axis of the wedge, however, do in many cases become

very large near the tip of the wedge but, even if the

wedge is perfectly sharp, these field components must

reach a maximum value and then vanish at the tip of

the wedge. The position of this maximum is established

approximately by examining the point at which the

coupled radial magnetic field, which occurs as a result

of the finite conductivity, becomes comparable in mag-

nitude to the radial magnetic field of the perfectly con-

ducting solution. As the conductivity increases, the

curve of H, vs r approaches the curve of H,” vs r, where

H,” is the radial magnetic field near a perfectly con-

ducting wedge. Even though H,” becomes infinite at

the tip of the wedge, however, H, reaches a maximum

and decreases to zero at the tip for all finite values of

wedge conductivity. This is very similar to the way in

which a finite Fourier series approaches a discontinuous

function as the number of terms taken becomes infinite.

It has also been shown that the surface impedance

condition holds to within a few skin depths of the tip of

a metal wedge and that, as long as the tangential mag-

netic field is not assumed to be that of the perfectly

conducting problem, this condition yields results which

are in agreement with the exact analysis based on the

power series approach, when the condition is assumed

to hold over the entire wedge face. Since the axial cur-

rents induced in the wedge do not become infinite but

rather vanish at the tip, even when the wedge is per-

fectly sharp, any errors introduced by applying the sur-

face impedance condition to the entire wedge face will

be small, The fact that “real” wedges, moreover, are not

perfectly sharp does not invalidate their representation

by a perfectly sharp mathematical model since the

“difference” region does not carry large currents.

In diffraction problems it makes very little difference

whether the secondary fields are caused by ‘(Huygen
sources” near the tip of the wedge, or whether they are

caused by conduction currents actually flowing on the

wedge. In calculating ohmic losses, however, this dif-

ference is extremely important and must be taken into

account in such calculations as those involved in deter-

mining the attenuation constant of wedge waveguides.

The present investigation is not a mathematically
rigorous solution to any particular wedge problem, and

further refinements would be needed if it were necessary

to determine the fields in the tip region to a very high

degree of accuracy. The ideas developed should be

looked upon as a second approximation to the problem

of boundary conditions on an imperfectly conducting
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wedge, the standard surface impedance condition being

the first approximation. This approximation does, how-

ever, embody some very important features of wedge

behavior and gives results for ohmic losses which agree

reasonably well with those found in practice.

The radial electric field E,, on the surface of the

wedge, can be made proportional to the axial magnetic

field H, for all values of r without contradicting the

Meixner edge condition. This, and conditions on other

boundaries, can usually be satisfied by the introduction

of additional coupled modes which satisfy known bound-

ary conditions of either the NTeumann or the Dirichlet

type, and which are vanishingly small in the tip region.

The problem of finding such solutions is often very dif-

ficult but once the radial magnetic field and the axial

electric field are modified as outlined in Section IV, the

boundary conditions are admissible in the sense that

the resulting fields will satisfy the edge condition. In

loss calculations, moreover, the normal component of

the Poynting vector is needed only on the faces of the

wedge, and the solution developed in Section IV is all

that is needed.

APPENDIX I

The ..%rface Im$edarzce Condition o~L the Face of a Wedge

Using Green’s theorem [10 ], the axial electric field

~.(r’, o’) anywhere within the metal wedge shown in

Fig. 4 can be expressed in terms of the normal deriva-

Eq. (69) can be further simplified by putting

G(v1 @, r’, +’) == j/4 [~o(2)(t@l) + ~o(’)(ax~z) ] (70)

where RI is the distance between (r, o) and (r’, 0’) and

R, is the distance between (r, @) and the image of

(Y’, +’) in the plane S, as shown in Fig. 4. Hij(2)(aR) is a

Hankel function s, of the second kind. In this case
dG/dn = o on S, and, by symmetry for fields which are

even function in ~ in Fig. 2, dEJdn = O cln S’. Eq. (69)

then becomes

77:(?”, +’) = – (j/4) J {Ho@(rd?J
Isfl

Since (a) has a negative imaginary part, the integration

on SS can be neglected, provided that S8 is more than a

few skin depths away from (r’, ~’).

Finally, letting y’ approach zero in Fig. 4, R i ap-

proaches R2 and (71) becomes

If the constants of the wedge material are given by

and

then, using (3), it is a simple matter to show that the

continuity of H, across the face of the wedge requires

that, when d =41 Fig. 1,

l-x --+ d~, H, – (~0/Pu) (1/r) ~E,/@5

Fig. 4—The coordinate system used to establish the – (j/@P) (1 + j@eo/(r) ‘

(73)
a?% –

surface impedance condition.

Substituting (73) into (72) yields

tive of this field on S1 and in terms of the field and its

derivatives on S2 and S3. If the fUnCtiOn ‘(r! @’ ‘“ ~’) EZ(P) = (– j/2)

satisfies s“’{ybldir–(j6x/fJ)(l/da~=/w—m(1 + jlx/u)

where 6 is the Dirac delta function and ~ is defined in + (j/2) ~ ~. ~ Ho(’) (aR1)dS2.

Section II following (4), then ~,(~”, ~’) can be written
(74)

S2

in the form
For very good conductors the second term of (74) and

r{

8G dz.(?’, 4)
~.(r’, 4’) = . Sl+s,+sa ~J~J ~) ~ –

}
G dS. (69) the second term within the first integra’1 of (74) can be

an neglected for all values of Y’.
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APPENDIX II

THE TIP EQUATION

Theorem: If H. is a given function of r and qi which

1) satisfies the two-dimensional Helmholtz equation,

2) satisfies the Meixner edge condition, and

3) approaches zero as r t where t< tH, the lowest

eigenvalue of a magnetic type solution [see (26)

and (27) ],

then (37) implies (38) and any E, satisfying (37) also

satisfies the Helmholtz wave equation as r approaches

zero, provided that none of the field components be-

come independent of the angle q5as r approaches zero.
Eq. (37) can be written in the form,

dE. /? tiHz
— + o(w),

%=ZY ar
(75)

as r approaches O, where O(r’) is any function which be-

haves as r’ for small values of r, and x> t~. Differentiat-

ing (75) with respect to r and (4) with respect to @yields

%=2[%%)++3+0(”’”)
= j&’H2 + 0(?’-’), (76)

if H, satisfies (5), the Helmholtz equation. If, moreover,

H$ satisfies the Meixner edge condition, then rHz ap-

proaches zero faster than VZ–l and therefore the deriva-

tive of H+ with respect to @ behaves as rx–l. If H$ does

not become independent of @as r approaches zero, more-

over, then Ho also behaves as rx–l, which is (38).

Differentiating (75) with respect to @yields

since H4 must approach O faster than vz–~. Multiplying

(78) by r, differentiating with respect to r, and substi-

tuting into (77), yields

d2E,

()
—= –Y+ Y= +O(f’x).
aoz

(79)

If E, satisfies (75) and does not become independent of

1#1as r approaches O, then Ez must approach O as r’ if Hz

approaches O as rf where t+ 1> t~ — 1. This means that

(CW)2EZ can be added to (79) without changing its be-

havior for small values of r and, therefore,

d2Ez

()
—+& r% +(ar)2Ez=0
d&

(80)

is satisfied by E, to within a relative error of order
~t~–t.
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