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length analysis of millimeter wavelength sources too
high in frequency to be measured conventionally.

Operating in the TEM mode the interferometer rep-
resents the ideal form of cavity resonator, permitting
the use of relatively large structures at very small wave-
lengths with complete freedom from troubles due to
higher order modes. The Q values obtained here are
higher than can readily be attained by a conventional
cavity resonator at these frequencies, and the indica-
tions are that still higher Q values can be obtained for
apertures and reflectors larger in terms of the wave-
length. As the cavity resonator for ultramicrowaves, the
use of the interferometer for dielectric constant and loss
measurements on both solids and gases is clearly indi-
cated, and in the ultramicrowave region of the spectrum
such a method becomes most advantagoues. Its use in
all other microwave devices employing a cavity is also
possible, and in particular it would appear that the in-
terferometer can be used with facility as the cavity
resonator for masers designed to operate at millimeter
and submillimeter wavelengths.

Aperture and reflector dimensions of 24 X and 50 A, re-
spectively, in extent were used here, and the insertion
loss at optimum transmission is around 15 db. Conse-
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quently, the reflected power is quite high so that the
fringes are best observed in transmission. For smaller
wavelengths the problem of adequate aperture and re-
flector dimensions in terms of the wavelength becomes
easier, and interferometers for specific purposes such as
maser cavities become easier to accommodate and use
with the associated apparatus. Also with apertures and
reflectors which are large in terms of the wavelength,
the problem of the diffraction correction becomes less
severe and important, and the ease with which the inter-
ferometer can be used for precision measurements such
as the velocity of light, and as a microwave standard of
length, will improve with the use of shorter wavelengths.
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Boundary Conditions and Ohmic Losses

in Conducting Wedges®

ROBIN M. CHISHOLMf{

Summary—The present work is concerned with the boundary
conditions required to calculate the ohmic losses occurring in metal-
lic wedges under the influence of electromagnetic waves which are
sinusoidal in time. The validity of the surface impedance condition
used in calculating waveguide wall losses is examined carefully, and
a ‘‘modified” surface impedance condition, which can be applied to
wedge problems in which the perfectly conducting solution is known,
is developed. A simple waveguide having a circular cross section, a
sector of which is occupied by a metal wedge, is used as an example.
The tangential magnetic field variations along the surface of the
wedge are shown graphically, demonstrating, near the tip of the
wedge, a large deviation from the tangential magnetic field of the
perfectly conducting solution.
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I. INTRODUCTION

HE heat losses within any conducting object
Tcaused by the presence of an electromagnetic

field, can be calculated by calculating the average
flow of power into the object as a result of the tangential
fields on its surface. The boundary conditions which
must be imposed on the surface of a metallic wedge in
order to calculate this power flow must be considered
very carefully. The standard surface impedance condi-
tion used in the calculation of waveguide wall losses re-
lates the tangential electric field at a conducting bound-
ary to the known tangential magnetic field which
would exist at the boundary if it were perfectly conduct-
ing. This condition, when applied to wedge problems,
often leads to fields which do not satisfy the Meixner
edge condition [1] and to infinite power losses in the re-
gion of the tip.
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Wedge problems have received considerable attention
in the past because of the possibility of infinite field
strengths at the tip of any wedge-shaped boundary. Be-
cause of this, the common technique of discarding wave
functions which possess singularities cannot be used,
and many boundary value problems involving wedges
appear at a first glance to lack uniqueness. In 1949
Meixner published his classical paper [1] on the “edge
condition,” which added a further “boundary condi-
tion” to wedge problems, making their solution, in any
situation, unique. Since then, the formulation of prob-
lems involving perfectly conducting wedges has been
quite straightforward, although the subsequent solu-
tions to many such problems are very complex. In re-
cent years, the problem of diffraction by an imperfectly
conducting wedge has been treated [2], [3] and the sur-
face impedance boundary condition used. Although
some doubt was expressed about the validity of the con-
dition in the neighborhood of the wedge tip, it was as-
sumed to hold for the entire wedge face and no apparent
difficulties resulted.

Difficulties do arise, however, when the surface im-
pedance condition is used to modify solutions to per-
fectly conducting wedge problems for the purpose of cal-
culating ohmic losses, and, for this reason, the general
problem of field behavior near conducting wedges is
studied in the present work. In Section II, the exact
field behavior within a few skin depths of the wedge tip
is examined. In Section III, the surface impedance con-
dition is derived using a wedge-shaped boundary and is
expressed in an integral form which reduces to the well
known surface impedance condition [4] except within
a few skin depths of the tip of the wedge. In Section IV,
the coupled modes in a wedge or septate waveguide
(Fig. 2) are developed and the reason for the apparent
breakdown in the surface impedance condition at the tip
of the wedge is illustrated. An approximate solution to
the problem is developed which agrees with the anal-
yses of Sections II and III and a numerical example,
using the wedge waveguide, is presented graphically in
Fig. 3.

II. FreLp BeEnaviorR NEAR THE T1P

In treating the behavior of the fields near the tip of
the wedge, the cylindrical coordinates 7, ¢, and s are
used. The z axis is taken along the axis of the wedge
which is shown in cross section in Fig. 1, The wedge has

been symmetrically placed with respect to the x axis

and, in the region outside of the wedge, the coordinate
angle ¢ is measured from the positive x axis. The fields
within the metal wedge are represented in terms of
another cylindrical coordinate system #, ¢, and Z in
which the coordinate angle ¢ is measured from the nega-
tive x axis, as shown. The two faces of the wedge are
given by '
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Fig, 1—The coordinate system used.

and

o= — o 6=+¢2;

and the total wedge angle ¢, is given by
$o = 2¢o.

The fields are assumed to vary as exp (jwt) and the elec-
tric properties of the wedge are designated by a complex
permittivity,

e = ¢ — jo/w,

where j=+/—1, and ¢ is the electrical conductivity in
mhos per meter. The wedge is assumed to have a mag-
netic permeability, &, which is very close to ue. Variation
in the z direction is assumed to be of the form exp (—jB2),
as it would be in a wedge waveguide.

The other four field components can be expressed in
terms of E, and I, by the following relationships [5]:

E. = — (jB/a?) G—EZ — (Jou/a*r) ?—I{zy (1)
ar d¢

Bo = ~ (JB/a) = 4 Gow/a) =20 (2
o) dr

H, = (jwe/a’r) —aﬁz — (jB/a?) (*)Hz) 3)

o¢ o

Hy = — (Jwe/a?) ﬁf — (jﬁ/a%’)’aHz; (4

or d¢p

where 3, in the case of the wedge waveguide, 1s the axial
propagation constant 2m/A ¢ and « is related to the free-
space propagation constant 2=2m/Ao, by the relation,

o = k2 — f2.

Representations of the form (1) to (4) are valid both in-
side and outside of the wedge when the appropriate e
and u are used. The constant 8 must be the same for
both regions, but @ in the interior region is many times
larger than « in the exterior region. In both regions,
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both E. and H. must satisfy the two-dimensional wave

equation,
) 5
v —
ar \ 9

where Y =E, or H, and & replaces « in the interior
region.

Following a procedure similar to that used by Meix-
ner [6], the fields E. and H, can be expanded in a power
series in 7 about the origin, =0,

— Z N daz’
n

o

+—+ (an¥ =0, (5)

(6)

and

= 20yt (7

where the ¢,’s and v,’s are functions of the angle ¢ and
0<Re () <1. Using (1) to (4), similar series can be de-
rived in terms of the ¢,’s and v.’s for the four transverse
field components. The Meixner edge condition [1],
which requires that the energy density in the fields be
integrable at the wedge tip, limits the behavior of the
six field components for small values of . It is a simple
matter to show that finite energy requires the two field
components parallel to the wedge axis to remain finite
as r approaches zero. This, in turn, means that, if
0<Re () L1, ¢1 and 7y, are the smallest nonzero coeffi-
cients in the series for E, and H,. The transverse field
components, however, may behave as 7~ as long as the
real part of ¢ is greater than zero.

Substituting (6) and (7) into the wave equation (5),
yields simple, ordinary differential equations for the co-
efficients ¢, and ., and in particular,
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2 e =

d¢2 + i1 Cy O (8)
with similar equations for i, ¢1, and i, where the bar
indicates fields within the wedge. This means that

¢y = l1 cos (ip) -+ Iy sin (ip), 9)

and

1 = Ajcos () 4+ Aesin (ip). (10)
Within the metal wedge, E, and H, can be expressed in
the same form, and in both regions the behavior of the
transverse field components as 7 approaches zero can be
found using (1) to (4) together with (9) and (10). In the
outside region,

= [L; cos (i¢) + La sin (t)]rt (11)
Es = [Lycost (t¢) — Ly sin (1) [r+, (12)
= [As cos (i) + Assin (19)]r+, (13)
= [As cos (t6) — Axsin (i) ]r*1, (14)
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with a similar representation within the wedge. In terms
of ¢y and vy,

Ly = — (jt/e®){ Bl + wuhs}, (13)
Ly = — (jt/a®){Bls — wuhi}, (16)
A= — (jt/a?) {BN\1 ~ wels}, (17)
Ao = — (jt/a®) {BNs + weli}. (18)

An identical set of relationships holds for the barred
quantities which represent the fields within the wedge.
Continuity conditions at the wedge faces can then be
used to determine the L's and A’s in terms of a single
amplitude factor. An estimate of how small » must be
before the first term is predominant in all of the series
involved, can be made by studying (5). This equation
can be written in terms of the dimensionless variable
(ar) and power series solutions appropriate to each region
would involve either (ar) or (@r). Since, within the metal,
a~(-—-jwuo)'? the condition that the first term of the
series within the wedge be predominant is that (r/5§)<<1
where 6 = (2/wuo)? is the skin depth of the metal.

The continuity of E,, eEs, I, and uH, at the two
wedge faces yields eight homogeneous, linear equations
in the eight unknown coefficients which determine the
field behavior near the tip of the wedge. Because of sym-
metry with respect to the angle ¢, these equations can
be separated into two sets of four equations each. For
fields which are even in E, and odd in H, with respect to
(f) (l2=Z2=)\1=)_\1=0),

Ly cos (ip1) — Ly cos (ips) = 0, (19
el sin (ipy) -+ &L1 sin (tpy) = 0, (20)
Az sin ({p1) + Rs sin ({gs) = 0, (21)
wolg cos (dy) — Ay cos (ip2) = 0. (22)

A nontrivial solution to this set of equations exists if,
and only if,
cos (tp1), — cos (ip2)

‘ sin (f¢1), sin ({¢2) ~ 0, (23)
sin (lp1), g sin (fhs)

cos (Ip1), — q cos (ip2)

where

g=2¢%e and gq = g/ uo.

Eq. (23) vields two sets of discrete eigenvalues for the
exponent £. One set, which depends only on g, makes the
first factor in (23) vanish. The other set, which depends
only on ¢, makes the second factor vanish.

A similar set of equations results from fields which are
odd in E, and even in H, with respect to the angle ¢ in
Fig. 1. In general, four sets of eigenvalues for ¢ occur.
Two sets depend only on the electric properties of the

wedge and are given by the roots of

sin (¢7)

cos (td1) sin () ’

1—-g= (24)
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and
sin ()
cos (ips) sin (fpy)

The first of these is associated with fields which are even
in E, and the second with fields which are odd in E, with
respect to the coordinate angle ¢. Replacing g by ¢ in
(24) and (25), two other sets of eigenvalues occur which
depend only on the magnetic properties of the wedge.

Solutions associated with values of ¢, determined by
the electric properties of the wedge, yield nonzero
values for L; and Z; in (19) to (22), but admit only the
trivial solution, As=A,=0, for the coefficients associ-
ated with H, and H, in (13) and (14). Solutions asso-
ciated with wvalues of ¢ determined by the magnetic
properties of the wedge, on the other hand, yield non-
zero values for the A's and admit only the trivial solu-
tion for the L’s. It can be seen, from (11) to (14), that
a field component can become infinite at the tip of the
wedge only if an eigenvalue of ¢ which is less than unity
admits a non-zero value for the L’s or A’s associated
with that component. This, in turn, means that any
singularities in the transverse components of the mag-
netic field at the tip of the wedge depend only on the
magnetic properties of the wedge. Singularities in the
transverse components of the electric field, moreover,
depend only on the electric properties of the wedge. If
the wedge has a magnetic permeability @ equal to po and
a conductivity of ¢ mhos per meter, then

1—g= (25)

1 — ¢ = (jo/weo)

and
1—-¢=0.
The “magnetic eigenvalues” are determined by the roots
sin (¢7)
= - (26)
COSs (Zf(ﬁl) sin (l‘(ﬁg)
and
sin (i
(i) 27

- cos (fpe) sin (id;)

which vyield only integral, nonzero values for £ This
means that no singularity can occur in either H, or H,
at the tip of the wedge. If g is close to wo, moreover, ¢
will lie very close to a positive integer and any singular-
ity in H, or H4 will be of a very low order.

The “electric eigenvalues,” on the other hand, are de-
termined by the roots of

o Jiee) = sin (¢r) (28
Joree) = cos (ip1) sin (ip2) )
and

(jofwer) = —— () 29)

cos (i) sin (1) '

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

March

For large values of (¢/wep), these eigenvalues lie close to
the zeros of sin (¢p1), sin (ips), cos (id1), and cos (ids),
which are given by

lin = (n+ Dw/(2¢1) (30)

and

lon = (n+ Dw/(2¢2) (31)

where 7 is a positive integer or zero. Eigenvalues which
are even multiples of 7/2¢; or odd multiples of 7/2¢:
are associated with solutions for E, which are odd with
respect to the angle ¢. The others are associated with
fields which are even in E,.

If ¢» lies between 0 and /2, then the only eigenvalue
less than unity in either (30) or (31) is

0 = 7/2¢1. (32)

For finite but large o, moreover, the lowest eigenvalue
for the metallic wedge is approximately given by
Jweg tan (#1,0m)

oP1

(33)

tg = t1,0 —

As ¢ becomes infinite, ¢z approaches f1,4, the eigenvalue
for the perfectly conducting wedge, as 1/¢ or as 82,
where 8 is the skin depth. This “perturbation” in ¢ caused
by the finite wall conductivity, therefore, is a second
order effect compared to the “coupled modes” discussed
i Section I111.

The axial fields associated with this lowest eigenvalue
are given, near the tip of the wedge, by

E. = licos (inp)r® (34)

and

H, = Ay sin ({gg)rt®, (35)

where /; and A; are related to each other from (18) by
I = (~ B/we)As (36)

since A;=0. Eq. (36) shows a fixed coupling between E,
and I, which is independent of the conductivity o of the
wedge. The two magnetic field components which are
perpendicular to the axis of the wedge, moreover, cannot
have a singularity of an order greater than 7! where
tx is the lowest eigenvalue associated with the magnetic
properties of the wedge. This eigenvalue in practice is
very close to unity. Using (3) and (4), these conditions
can be expressed mathematically in terms of the two tip
equations:

JAE, 8 dH,
- —0 faster than % (37
d¢ wey 07
and
6Hz wep aEz
— —0 faster than rt® (38)
d¢ B ar
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These equations do not, of course, restrict the behavior
of E, and H, unless these field components individually
approach zero more slowly than r'. It can be shown,
however, that (37) implies (38) and is a necessary and
sufficient condition for finding the coupled E, near the
tip of an imperfectly conducting wedge if H., is a given
wave function which approaches zero as #* where (<ty
[and indeed # can be as low as ¢z in (33) ].

111. FiELD BEHAVIOR AWAY FROM THE TI1P

In Appendix I an expression is derived for the rela-
tionship between E, and H, on the surface of a metal
wedge where the coordinates used are shown in Fig. 1.
The expression is in integral form and holds everywhere
on the faces of the wedge. For highly conducting wedges
the expression reduces to

Er, 1) = w—; f THTH0<2>(&| x| )dx (39)

in which E, is the axial electric field on the surface
¢ = -+¢,, a distance r from the tip of the wedge. H, is
the radial magnetic field a distance x from the point at
which E, is being evaluated. H0(2>(5z|x‘) is a Hankel
function of the second kind [7] which behaves as
(%ﬂ'&|x|)‘”2 exp (—ja|xi — ) for large values of ‘xl .
If & has a negative imaginary part Ho®, (al x|) vanishes
rapidly as lx( increases and, for # more than a few skin
depths, the upper limit in (39) can be taken as .
Furthermore, if H, is continuous and slowly varying
near the point x=0, it can be replaced by its value at
x=0, in which case (39) becomes

E3(7’7 ¢1) = (izli Hr(n ¢1)f H0(2>(C_¥| .?C| )dx (40)

This integral can readily be evaluated by using tables
of Laplace transforms [8] to yield

Wl 2
Ez("; ¢1) = ?Hr(i’, ¢1)m = Zer(77 (bl) (41}

(@)
for large values of wedge conductivity. Z, is called the

surface impedance of the metal and is related to the skin
depth & by

wud(1 +7)

5 (42)

8

The same analysis can be used to relate E, at the wedge
face ¢ =¢1 to H, yielding the result,

E,(r, ¢1) = — ZH.(r, $1)- (43)

Relationships on the other wedge face ¢ = —¢; are iden-
tical except for sign.

This surface impedance condition relates the tangential
electric field at the surface of the wedge to the folal
tangential magnetic field existing at the same point.
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This relationship is valid to within a few skin depths of
the wedge tip, and the error introduced by assuming
that it holds over the entire wedge face does not appear
to be too large. This assumption has been used success-
fully in diffraction problems [2] and the integral ex-
pression (39) does not indicate any violent breakdown
in the relationship. If the actual H,, however, is assumed
to be the same as it would be if the wedge were perfectly
conducting, this field becomes infinite at the wedge tip
in many problems. Applying the surface impedance con-
dition in this case would vield an axial electric field
which would become infinite at the wedge tip in viola-
tion of the edge condition. This difficulty, however, can
be resolved by considering a simple example.

The lowest propagating mode of the wedge waveguide
shown in cross section in Fig. 2, when perfectly con-
ducting walls are assumed, is governed by the axial
magnetic field,

H.° = J(ar) sin (¢¢) (44)

where t=1¢;,0=7/2¢1, and J.(ar) is a Bessel function of
the first kind. The constant « is defined in Section II
following (4). The radial magnetic field associated with
this mode is given by (3), namely,

7,0 = 2 1 ar) sin (9). (45)
(44

1

r
D
fo

Fig. 2—The wedge waveguide.

The finite conductivity of the walls will introduce an
axial electric field proportional to Z; or to the skin depth
8. This perturbation cannot be taken care of by the small
perturbation in the eigenvalue ¢, which by (33) is propor-
tional to 82, and a coupled mode must be introduced.
By using a well known relationship for Bessel functions
[9] a wave function E.* can be found which, on both
wedge faces, satisfies the condition,

E. = + ZH,, (46)
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and which has the form,
e _ ZjB [Jt«l(ar) cos [(t — 1)¢]
) 2a cos [(t — 1)¢1]
 Junafar) cos [(t + 1>¢]]‘ )
cos [(# + 1)¢1]
This “coupled” mode, moreover, carries with it a radial

magnetic field which is related to E.® by (3). Calling this
coupled magnetic field H,°, it is given by

jwe OFE.°
B or I

e
r

(48)

Since, for any fixed position on the surface of the wedge,
E.® is proportional to Z.H,%, H,* is also proportional to
Z.H, and vanishes as the wall conductivity becomes
infinite. One is therefore tempted to assume that H,¢ is
negligibly small compared to H,° in problems involving
metal wedges. The » in the denominator of (48), how-
ever, makes H,° become arbitrarily large for small
values of 7, and the ratio of H,* to H,® on the wedge
surface is given by

He -2, " )[ 27 (ar)
mo 7 YT en

where b= (jwe/a?) and Z,=wud(1-+5)/2, where § is the
skin-depth. This ratio is small if #/§ is large but, for
finite values of §, this ratio becomes infinite as » ap-
proaches zero.

This result suggests a modified surface impedance
condition in which H,° is replaced by (H,°+H.,%). The
surface impedance condition then becomes

= ZJH, + (jwe/a?r)E,/0¢].

For points more than a few skin depths away from the
tip of the wedge, (50) is just (46), the surface impedance
condition used in all waveguide problems. As 7 ap-
proaches zero, however, (50), which can be rewritten in
the form,

- 1} (49)

(50)

JE.°
—FE, = 7 + )

(51)
bZ, we ar 0

using (45), approaches the tip equation (37) provided
that E.* and H.° both approach zero as * where ¢t+1 is
greater than ¢g. This will always be the case if E.* and
H.° satisfy the Meixner edge condition which places a
lower limit on the exponent &.

This analysis shows that if the modified surface im-
pedance condition is assumed to hold over the entire
wedge face, fields which are in agreement with the
analysis of Section II can be found. These fields will be
identical with those derived from (44) and (47) for large
values of 7/6 and the breakdown will occur when H,,
given by (48), becomes comparable in magnitude to H,°
given by (45). As »/8 approaches zero, moreover, the
radial component of the magnitic field will approach
zero as shown in Section II.
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IV. FINDING APPROXIMATE SOLUTIONS

In Appendix I1 it is shown that, if H,%is a given wave
function which satisfies the Meixner edge condition at
the tip of the wedge, then any function E, which satis-
fies the tip equation (37) will also satisfy the wave equa-
tion for small values of 7, and will give rise to fields which
are in keeping with the “tip” analysis given in Section
11, provided only that none of the resulting field com-
ponents become independent of the angle ¢ in Fig. 1, as
r approaches zero. This condition can usually be satisfied
by inspection when looking for approximate solutions.
Eq. (37), moreover, can be written in the form,

oE,
5 + (r/0)H." + O(r) = O, (52)

d

where b= (jwe/a?), H,'= —(j8/a*)0H,"/0r, and O(*) is
any function which approaches 0 as #* where x> fy.
Away from the tip region the coupled field can be found
by ordinary methods since its value on the faces of the
wedge and on other boundaries is a known quantity re-
lated to the tangential magnetic field of the perfectly
conducting solution to the problem. For large values of
/8, therefore, E, is known and has, in the simplest case,
the form,

L, = ZerO/P(¢): (53)

where P(¢) is a well behaved, odd function of the angle
¢ such that P(¢1) =1. If (53) is true, then a solution of
oL,

- — 54
¢ bz, (54

P(¢‘)Ez = - %Hro

has the following properties:

1) For small values of |7/ Zgl it satisfies (52).

2) For large values of |r/b Z,| it satisfies (53) and
therefore approaches its correct value away from
the tip region,

3) For all values of 7 it satisfies the surface impedance
condition on the faces of the wedge.

Functions which satisfy (54) can be found quite easily;
the general solution has the form,

E, = —exp l:(r/sz) f P(¢)d¢:|

XfeXP |:(~ f/sz)f P(¢)d¢] (r/0)H, (r, $)dp. (55)

Using (55) as a guide, it is a simple matter to find an E,
which satisfies the tip equation for small values of 7/8,
and which approaches in a continuous manner the
“standard” solution given by (53) for large values of
7/8. The condition that none of the field components be-
come independent of ¢ as r approaches 0 can usually be
satisfied by inspection. This technique, therefore, en-
ables one, with a minimum amount of guessing, to find
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a continuous function which satisfies the correct bound-
ary conditions and the wave equation near the tip of the
wedge, and which approaches the “standard” coupled
mode solution away from the tip. The transition region
can be estimated from (49) since it is determined by the
distance from the tip of the wedge at which the standard
surface impedance condition used in most waveguide
problems breaks down.

In the present example, however, E.,* and H,° do not
satisfy (53) and H,° has to be written in the form,

H,* = — (38/2a)|J 1ms(ar) — Jip1(ar)] sin (1)
= HA+ 0 (56)
In (47), however, E.* has the form,
Ee=EA+ E? (57)
where
Z.HA i—1
A cos [( . )¢] (58)
cos [(# — D] sin (¢¢)
and
g _ ZeHP cos [+ Dol (59)

cos [( + 1)¢1] sin (1) ’

both of which are of the form of (53). Both E.® and H,®
vanish instead of becoming infinite at the wedge tip and
(59) can be assumed to be valid for all values of . Eq.
(58) represents the dominant fields for small values of
7/8, and 4 can be used to replace H,® in (53). A field
E. can then be found as before, using (55) as a guide.
This function, of course, approaches FE.,4 in (58) for
large values of 7/8, but E.B as given by (59) can be
added to the solution for all values of » without affecting
the behavior of the solution near the tip of the wedge
since E.2 vanishes as #*t1. When this is done, the coupled
axial electric field in the wedge waveguide is given, on
the faces of the wedge, by the simple expression,

5 — (Ba/we)r | (ar) {(z/62,) + t cos (t¢1)]
) [(r/82.)* + ]

where b= (jwe/a?). For large values of lv/b Z, | this is
just the surface impedance condition relating E, to H,°
on the wedge surface. For small values of [r/b Z, ] (60)
holds for all values of ¢ simply by replacing ¢1 by ¢.
When this is done it is a simple matter to show that
He=—H, and H,*= — H " as required by the analysis
in Section 11.

Since the present theory assumes that (50) holds
for all values of 7, the total radial magnetic field
H,=H,"+H., is proportional to E.* in (60) on the faces
of the wedge. This field differs from H,° for small values
of 7/8 and a plot of H, in a typical wedge waveguide is
given in Fig. 3 for different values of 8/\o, where § is the
skin depth, \o the free-space wavelength, and D the
diameter of the waveguide.

(60)

Chisholm: Boundary Conditions and Ohmic Losses in Conducting Wedges

195
10 N | [
O T T T
\—Perfect Conductivity.
90
80 /[\‘
o 70 /«5.
= N =8x1076
S 60 Mo
~ | | .
50 ~s
= ] / S
S 40
o I /l—§=2.4x|o'5
£ 30 I / °
L 50 7
1o H—~
0
0 | 2 3 4q 5 [ 7

£)x10% ——

(5

Fig. 3—The variation of the total radial magnetic field with distance
from the tip of the wedge in a one-degree wedge waveguide oper-
ating in its lowest mode. D is the diameter of the waveguide, Ao
th;: free-space wavelength, and & the skin depth. In this case
Xo/D=2.0.

V. Onmic Losses

When (19) to (22) are solved for I; and &,, the elec-
tric field components within the wedge are given, near
the tip, by

E, = — [jB/o cos (1m)|(7) * cos (19), (61)

E, = [t/o cos (=) ] (7)1 cos (1), (62)
and

E; = — [t/o cos (tw) [(7) = sin (1), (63)

when it is assumed that the axial magnetic field, outside
of the wedge, has the form,

= (r)*sin (1),

near the tip of the wedge. If | E| is the rms value of the
electric field in volts per meter, and if £ is the complex
conjugate of E, the total power loss per unit length with-
in a sector of the wedge bounded by a small radius 7y,
is given by

(64)

+¢2
W = f f {oE- E}7d7d§ watts per meter.  (65)
For small values of #,/8, this integrates to
= o[ 20 cos? (tm)]~'ro?* watts per meter.  (66)
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This is vanishingly small for small values of 7y, demon-
strating that the power dissipated in the tip region is
small. As o becomes infinite, the power dissipated in the
tip region approaches zero. The expression is valid for
very small values of ¢, the total wedge angle, the limit-
ing value of ¢, being determined by the breakdown of
(33). For vanishingly small values of ¢,, however, the
effect of the wedge disappears for any finite value of ¢
and the minimum value of ¢ approaches unity rather
than 3.

A more practical approach to the loss problem is to
integrate the real part of the complex Poynting vector
S,* over the faces of the wedge. In terms of rms field
quantities, Ss* is given by

Sy* = E,H, — E.H, watts per square meter. (67)

If the value of E, is given by (60) (or, in general, if E, is
derived by the method outlined in Section 1V) the func-
tion S4* is integrable over the entire wedge face yielding
a small flow of power into the tip region which is con-
sistent with (66).

When this method is used to calculate the attenua-
tion constant of a wedge waveguide, the contribution
from the region of the wedge surface which is less than
one skin depth from the tip is insignificantly small.
When the standard, unmodified method is used, how-
ever, the contribution from this region dominates the
contributions to the attenuation constant from all other
regions of the waveguide surface. For an 18° wedge
waveguide operating in its lowest mode at a frequency
halfway between cutoff and the cutoff frequency of the
next lowest mode, the contribution from this “tip re-
gion” is equal to the contribution from the rest of the
wedge surface. The total attenuation constant found
by the unmodified method in this case is 38 per cent
larger than that found by the method described in the
present paper. For a typical $° wedge waveguide, more-
over, the unmodified method yields a contribution from
the tip region which is 50 times the contribution from
the rest of the wedge surface. This yields an attenuation
constant which is more than 30 times as large as that
found by the method described in the present paper.

Numerical values for the attenuation constants of
wedge waveguides have been published elsewhere [11].
These are given as functions of wedge angle, conductiv-
ity, and frequency over the usable range of such wave-
guides. The attenuation constant varies slowly with the
wedge angle and approaches a finite value as the wedge
angle approaches zero.

V1. CoNCLUSIONS

The exact field behavior near the tip of a mathemat-
ically sharp, imperfectly conducting wedge has been
analyzed and it has been shown that the field compo-
nents satisfy static boundary conditions in the region
of the tip. It has also been shown that the only singu-
larity which can occur in any component of the electric
field at the tip of the wedge depends only on the dielec-
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tric constant and the conductivity of the wedge. Simi-
larly it has been shown that the only singularity which
can occur in any magnetic fleld component depends
only on the permeability of the wedge. This means that
highly conducting wedges with a permeability equal to
that of the surrounding medium cannot support a singu-
larity in any of the magnetic field components as the
perfectly conducting wedge appears to do. The mag-
netic field components which are perpendicular to the
axis of the wedge, however, do in many cases become
very large near the tip of the wedge but, even if the
wedge is perfectly sharp, these field components must
reach a maximum value and then vanish at the tip of
the wedge. The position of this maximum is established
approximately by examining the point at which the
coupled radial magnetic field, which occurs as a result
of the finite conductivity, becomes comparable in mag-
nitude to the radial magnetic field of the perfectly con-
ducting solution. As the conductivity increases, the
curve of H, vs » approaches the curve of H,° vs r, where
H,® is the radial magnetic field near a perfectly con-
ducting wedge. Even though H.% becomes infinite at
the tip of the wedge, however, H, reaches a maximum
and decreases to zero at the tip for all finite values of
wedge conductivity. This is very similar to the way in
which a finite Fourier series approaches a discontinuous
function as the number of terms taken becomes infinite.

It has also been shown that the surface impedance
condition holds to within a few skin depths of the tip of
a metal wedge and that, as long as the tangential mag-
netic field is not assumed to be that of the perfectly
conducting problem, this condition yields results which
are in agreement with the exact analysis based on the
power series approach, when the condition is assumed
to hold over the entire wedge face. Since the axial cur-
rents induced in the wedge do not become infinite but
rather vanish at the tip, even when the wedge is per-
fectly sharp, any errors introduced by applying the sur-
face impedance condition to the entire wedge face will
be small. The fact that “real” wedges, moreover, are not
perfectly sharp does not invalidate their representation
by a perfectly sharp mathematical model since the
“difference” region does not carry large currents.

In diffraction problems it makes very little difference
whether the secondary fields are caused by “Huygen
sources” near the tip of the wedge, or whether they are
caused by conduction currents actually flowing on the
wedge. In calculating ohmic losses, however, this dif-
ference is extremely important and must be taken into
account in such calculations as those involved in deter-
mining the attenuation constant of wedge waveguides.

The present investigation is not a mathematically
rigorous solution to any particular wedge problem, and
further refinements would be needed if it were necessary
to determine the fields in the tip region to a very high
degree of accuracy. The ideas developed should be
looked upon as a second approximation to the problem
of boundary conditions on an imperfectly conducting
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wedge, the standard surface impedance condition being
the first approximation. This approximation does, how-
ever, embody some very important features of wedge
behavior and gives results for ohmic losses which agree
reasonably well with those found in practice.

The radial electric field E,, on the surface of the
wedge, can be made proportional to the axial magnetic
field H, for all values of » without contradicting the
Meixner edge condition. This, and conditions on other
boundaries, can usually be satisfied by the introduction
of additional coupled modes which satisfy known bound-
ary conditions of either the Neumann or the Dirichlet
type, and which are vanishingly small in the tip region.
The problem of finding such solutions is often very dif-
ficult but once the radial magnetic field and the axial
electric field are modified as outlined in Section 1V, the
boundary conditions are admissible in the sense that
the resulting fields will satis{y the edge condition. In
loss calculations, moreover, the normal component of
the Poynting vector is needed only on the faces of the
wedge, and the solution developed in Section IV is all
that is needed.

APPENDIX I
The Surface Impedance Condition on the Face of a Wedge

Using Green’s theorem [10], the axial electric field
E,(#', ") anywhere within the metal wedge shown in
Fig. 4 can be expressed in terms of the normal deriva-

X —

Fig. 4—The coordinate system used to establish the
surface impedance condition.

tive of this field on Sy and in terms of the field and its
derivatives on Sy and S;. If the function G(r, ¢, #', ¢')
satisfies

VG 4 (2)2G = 8(r — v)é(é — ¢') (68)

where & is the Dirac delta function and & is defined in
Section II following (4), then E.(, ¢') can be written

in the form
_ G
{Em, 0~

ds. (69)
an

rire = [

! S1+89+8;

AE.(r,
(r, ¢) G}
an
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Eq. (69) can be further simplified by putting
Gr, ¢, 7, &) = j/A[Ho®(@Rs) + Ho® (aRs) ] (70)

where R is the distance between (r, ¢) and (v, ¢’) and
R, is the distance between (7, ¢) and the image of
(r', ¢") in the plane Sy as shown in Fig. 4. H,®(aR) is a
Hankel function s, of the second kind. In this case
9G/9n=0 on S; and, by symmetry for fields which are
even function in ¢ in Fig. 2, E./0n=0 on S,. Eq. (69)
then becomes

E(r,¢) = — (j/9) | {Ho®@Ry)

81

z

+ H0(2)<&R2)} S

0ny
_ 4
+ (3/4) Eza_ {Ho(g)(&Rl)

Sy na

+ Hy®(aRy)}dSs.  (71)

Since (&) has a negative imaginary part, the integration
on S; can be neglected, provided that .S; is more than a
few skin depths away from (¢, ¢').

Finally, letting ¥" approach zero in Fig. 4, R, ap-
proaches Ry and (71) becomes

oF,
dx

E,(P) = — (j/'2)f H®@| »|)
o an

_
Foe Ho®(3R)dS1,

"y

+ (/2 (712)

Sg

If the constants of the wedge material are given by

M= Mo,

and

E=¢ — jo/w,

then, using (3), it is a simple matter to show that the
continuity of H, across the face of the wedge requires
that, when ¢ =¢, Fig. 1,

oF, _ H, — (eo/uo)(1/1)0E,/0¢

- ; ; (73)
an — (j/wp)(1 + jweo/a)
Substituting (73) into (72) yields
52 Hr __ . 1 aEz 9
EP) = (—j/D) [ oo/ 1/ )08 34}
— (1 + jwe/a)
“Ho® (&l x| )dx
- 0
+ (5/2) E,— H¢®(aR)dS,. (74)
s, Ontg

For very good conductors the second term of (74) and
the second term within the first integral of (74) can be
neglected for all values of #.
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AprrENDIX 11
Tue Tir EQuaTiON
Theorem: If H, is a given function of » and ¢ which

1) satisfies the two-dimensional Helmholtz equation,

2) satisfies the Meixner edge condition, and

3) approaches zero as 7 where (<i¢y, the lowest
eigenvalue of a magnetic type solution [see (26)

and (27 1],

then (37) implies (38) and any E, satisfying (37) also
satisfies the Helmholtz wave equation as # approaches
zero, provided that none of the field components be-
come independent of the angle ¢ as » approaches zero.
Eq. (37) can be written in the form,
oE, 8 0dH,

— ¥

O(r®),
d¢ we ar + 00

(75)

as 7 approaches 0, where O(r%) is any function which be-
haves as 7% for small values of 7, and x>¢y. Differentiat-
ing (75) with respect to 7 and (4) with respect to ¢ yields

aly —jB[ 9/ 8H, 1 9°H,
HEE
I a? Lor or 7 d¢?

JBrH, + O(r=1),

I

(76)

if H, satisfies (5), the Helmholtz equation. If, moreover,
H, satisfies the Meixner edge condition, then 7H, ap-
proaches zero faster than ! and therefore the deriva-
tive of Hy with respect to ¢ behaves as #*~L If Hy does
not become independent of ¢ as » approaches zero, more-
over, then H, also behaves as 771, which is (38).
Differentiating (75) with respect to ¢ yields

*E, 8 9%,

=—v
dp? we O¢pdr

+ 0. (77)

Eq. (4), moreover, implies that as » approaches 0,

— 8/an) 22 = Goefat) 4 0, (79
( Jﬂ/af)a¢—7wea P ),
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since Hy must approach 0 faster than 71, Multiplying
(78) by r, differentiating with respect to 7, and substi-
tuting into (77), yields

4°E, 5} ( oL,
= r

= — ¥y —

79
J¢p? or (79)

o ) -+ O(r7).
If E, satisfies (75) and does not become independent of
¢ as 7 approaches 0, then E, must approach 0 as 7¢ if H,
approaches 0 as #* where ¢+1>¢y—1. This means that
(ar)?E, can be added to (79) without changing its be-
havior for small values of » and, therefore,

I E, . 0 ( 8EZ> F (a2 0
y—r — 7)2E, =
d¢? or ar “

(80)

is satisfied by E, to within a relative error of order
piE—e
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